Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

نویسندگان

  • Kaj Scherz Andersen
  • Rasmus Bojsen
  • Laura Gro Rejkjær Sørensen
  • Martin Weiss Nielsen
  • Michael Lisby
  • Anders Folkesson
  • Birgitte Regenberg
چکیده

Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the Σ1278b background and found 71 genes that were essential for biofilm development. Quantitative northern blots further revealed that AIM1, ASG1, AVT1, DRN1, ELP4, FLO8, FMP10, HMT1, KAR5, MIT1, MRPL32, MSS11, NCP1, NPR1, PEP5, PEX25, RIM8, RIM101, RGT1, SNF8, SPC2, STB6, STP22, TEC1, VID24, VPS20, VTC3, YBL029W, YBL029C-A, YFL054C, YGR161W-C, YIL014C-A, YIR024C, YKL151C, YNL200C, YOR034C-A, and YOR223W controlled biofilm through FLO11 induction. Almost all deletion mutants that were unable to form biofilms in liquid medium also lost the ability to form surface-spreading biofilm colonies (mats) on agar and 69% also lost the ability to grow invasively. The protein kinase A isoform Tpk3p functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell-cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally.The study provides a resource of biofilm-influencing genes for additional research on biofilm development and suggests that the regulation of FLO11 is more complex than previously anticipated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study

Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to  surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...

متن کامل

Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae

Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...

متن کامل

اثر مخمر پروبیوتیکی ساکارومایسس سرویزیه بر تشکیل بیوفیلم استافیلوکوکوس اورئوس

Background and Objective: Biofilm formation is an important virulence factor in Staphylococcus aureus. Most infections associated with biofilm of this bacterium are difficult to treat with antibiotics. As yet, a lot of mechanisms have been explained for probiotic yeast functions against bacterial infections, but few studies have been done on their effects on biofilm formation. The aim of this s...

متن کامل

Preparation of Proper Culture Medium for Saccharomyces cerevisiae var. boulardii with Molasses and Animal Serum

Introduction: The purpose of this study was formulation and preparation of a proper culture medium for Saccharomyces cerevisiae var. boulardii with molasses and animal serum. Methods: A fully-crossed factorial design contain 5%, 10% and 20% of molasses (M) with 0, 1% and 5% animal serum (S) was used in this study. The pH of all culture medias were adjusted to 5.6 with acetic acid. The seed was ...

متن کامل

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014